Division of Air Quality 601 57th Street SE Charleston, WV 25304 Phone (304) 926-0475 Fax (304) 926-0479

Earl Ray Tomblin, Governor Randy C. Huffman, Cabinet Secretary www.dep.wv.gov

west virginia department of environmental protection

G70-D GENERAL PERMIT E	NGINEERING EVALUATION			
RELOCATION, ADMINISTRATIVE UPDATE AND OPER	REGARD TO THE CONSTRUCTION, MODIFICATION, RATION OF NATURAL GAS PRODUCTION FACILITIES THE WELL SITE			
APPLICATION NO.: G70-D216A	FACILITY ID: 095-00072			
☐ CONSTRUCTION ☑ MODIFICATION ☐ RELOCATION	☐ CLASS I ADMINISTRATIVE UPDATE ☐ CLASS II ADMINISTRATIVE UPDATE			
BACKGROUND	INFORMATION			
Name of Applicant (as registered with the WV Sec INC	retary of State's Office): JAY-BEE OIL & GAS			
Federal Employer ID No. (FEIN): 55-073-8862				
Applicant's Mailing Address: 3570 Shields Hill Rd				
City: Cairo State: WV ZIP Code: 26337				
Facility Name: Moe Well Pad Production Facility				
Operating Site Physical Address: Klondike Acres I If none available, list road, city or town and zip of				
City: Middlebourne Zip Code: 26	County: Tyler			
Latitude & Longitude Coordinates (NAD83, Decim Latitude: 39.47509 Longitude: -80.88063	nal Degrees to 5 digits):			
SIC Code: 1311 NAICS Code: 211111	Date Application Received: November 23, 2016			
Fee Amount: \$4,000	Date Fee Received: November 28, 2016			
Applicant Ad Date: December 14, 2016	Newspaper: Tyler Star News			
Date Application Complete: October 5, 2016	Due Date of Final Action: November 18, 2016			
Engineer Assigned: Jonathan Carney				
Description of Permitting Action: Installation of a MMscfd Dehydration Unit with a 20 MMscfd Dehycombustor EC-2.				

PROCESS DESCRIPTION

The following process description was taken from Registration Application G70-D216A:

Natural gas and produced fluids (condensate and water) are received from two wells and passed through Gas Processing Units (one per Marcellus well and two per Utica well) to avoid ice formation during subsequent pressure drops. These materials pass through a three-way separator where gas, condensate, and water are separated. All gas fired equipment will use natural gas produced at the site as fuel. The Facility will then compress (proposed modification) and then dehydrate the gas. The gas is then injected into a gathering pipeline owned and operated by others.

Both condensate and produced water will be accumulated in six (6) 210 BBL tanks (three for condensate and three for produced water), pending truck transport by others.

Flash, working, and breathing losses from these tanks will be routed to a vapor recovery unit (VRU) with the captured vapors routed back to the raw gas discharge line. An enclosed combustor will be utilized as a backup control device for times when the VRU is not available and is also utilized if a large slug of condensate production generates flash gas in excess of the capacity of the VRU.

The dehydration unit will generate emissions from the still vent and re-boiler. Still vent vapors will be routed to an enclosed combustor. Emissions from the reboiler combustion will be vented to the atmosphere.

A thermo-electric generator to meet minor electric demands for monitoring and data tracking equipment has been installed at the facility.

SITE INSPECTION

Site Inspection Date: September 20, 2016

Site Inspection Conducted By: Douglas Hammell

Results of Site Inspection: The inspector reported that the pad was approximately 1,200 feet from the nearest dwelling. No emission units listed in the application were on site.

Did Applicant meet Siting Requirements? According to the inspector, the site is acceptable for general permit G70-C216.

If applicable, was siting criteria waiver submitted? N/A

Directions to Facility: Middlebourne, SR-18S-R on Bridgeway, 0.3, Lon Wick, 0.5, L on CR-46, Klondike Ridge, 0.4, L on Klondike Acres, 0.9. Take access road from Larry Well Pad for 0.7 miles to Moe Well Pad

Overhead Google Earth Image of Facility:

ESTIMATE OF EMISSIONS BY REVIEWING ENGINEER

The following table indicates which methodology was used in the emissions determination:

Emission Unit ID#	Process Equipment	Calculation Methodology (e.g. ProMax, GlyCalc, mfg. data, AP-42, etc.)
HTR-1	Gas Processing Unit	AP-42
HTR-2	Gas Processing Unit	AP-42
HTR-3	Gas Processing Unit	AP-42
HTR-4	Line Heater	AP-42
TL-1	Condensate Truck Loading	AP-42
TL-2	Produced Water Truck Loading	AP-42
VRU-1	VRU Drive	AP-42
TEG-1	Thermal Electric Generator	AP-42
EC-1	Enclosed Combustor	AP-42 and 40 CFR 98
T01	Condensate Tank	Material Balance, EPA
T02	Condensate Tank	Material Balance, EPA
T03	Condensate Tank	Material Balance, EPA
T04	Produced Water Tank	Material Balance
T05	Produced Water Tank	Material Balance
T06	Produced Water Tank	Material Balance
RBV-2	Dehydration Unit Re-boiler Vent	AP-42
RSV-2	Dehy Unit Stil Vent	AP-42 and 40 CFR 98
EC-2	Dehy. Unit Combustor Enclosed Combustion	AP-42 and 40 CFR 98
CE-1	Compressor Engine	Mfg. Data/AP-42/40 CFR 98

The total facility PTE for the facility (excluding fugitive emissions) is shown in the following table:

Pollutant	Facility Wide PTE (tons/year)	PTE Change for Modification (tons/year)
Nitrogen Oxides	11.8	6.13
Carbon Monoxide	12.88	-0.08
Volatile Organic Compounds	17.51	4.26
Particulate Matter-10/2.5	0.91	0.44
Sulfur Dioxide	0.03	0.01
Formaldehyde	1.48	1.41
Total HAPs	2.91	2.15
Carbon Dioxide Equivalent	13,927	6,805

Maximum detailed controlled point source emissions were calculated by the applicant and checked for accuracy by the writer and are summarized in the table on the next page.

APPLICANT: Jay-Bee Oil & Gas, Inc.	T: Jay-	Bee Oil	& Gas, In	ci.		1	ACIL	FACILITY NAME: Moe Well Pad	AME:	Moe Wel	Il Pad			9	G70-D216A	5A
701 +1120	NOx	*C	C	00	VOC	Ç	SO_2)2	PM10	10	PM _{2.5}	2.5	Meti	Methane	GHG (CO ₂ e)	CO2e)
Emission Four 1D#	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	1b/hr	tpy
CE-1	1.52	99'9	0.52	2.27	1.40	6.13	<0.01	0.03	0.11	0.50	0.11	0.50	12.32	53.97	1,750	7,666
HTR-1	0.15	99'0	0.13	0.55	0.01	0.04	<0.01	<0.01	0.01	0.05	0.01	0.05	<0.01	0.02	181.1	793
HTR-2	0.15	99.0	0.13	0.55	0.01	0.04	<0.01	<0.01	0.01	0.05	0.01	0.05	<0.01	0.02	181.1	793
HTR-3	0.15	99.0	0.13	0.55	0.01	0.04	<0.01	<0.01	0.01	0.05	0.01	0.05	<0.01	0.02	181.1	793
HTR-4	0.05	0.22	0.04	0.18	<0.01	0.01	<0.01	<0.01	<0.01	0.02	<0.01	0.02	<0.01	0.01	60.4	264
TL-1		•	ı	ı	2.96	0.91	1	1	4	1	-	-		ma .	To be a second s	Androccol (Marchochann de 1794 well
TL-2		1	•	,	80.0	0.04		ı	•	•	,	ı	ı	ı	ı	
VRU-1	0.19	0.81	0.37	1.62	0.04	0.18	<0.01	<0.01	0.01	90.0	0.01	90.0	0.13	0.55	89.7	393
TEG-1	<0.01	0.01	<0.01	<.0.01	<.0.01	<0.01	<0.01	<0.01	<.0.01	<0.01	<0.01	<0.01	<0.01	<0.01	1.60	7.00
T01-T06	ı	ı	•	,	1.83	8.03	•	ı					0.26	1.14	6.5	28
EC-1	0.29	1.25	1.10	4.81	1.84	0.43	<0.01	<.0.01	0.02	0.07	0.02	0.07	0.26	0.07	446.6	1956
EC-2	0.18	0.78	0.52	2.28	0.38	1.66	<0.01	<0.01	<0.01	0.10	0.04	0.10	<0.01	0.02	257.6	1128
RBV-2	0.02	0.09	0.02	0.07	<0.01	<0.01	<0.01	<0.01	<0.01	0.01	<0.01	0.01	<0.01	<0.01	24.2	106
Haul Roads Fugitive	-	l	ı		•	•	ı	1	30.10	5.98	Þ	•	•	ł	ı	ı
Fugitive	ı	ı	1	ı	0.41	1.78	ı	,				ı	0.37	1.63	9.3	40.65
TOTAL	2.7	11.8	2.96	12.88	6.73	17.51	<0.01	0.03	0.17	0.91	0.17	0.91	12.97	55.82	3,180	13,927

APPLICANT: Jay-Bee Oil & Gas, Inc.	ay-Bee O	il & Gas,	Inc.			FACIL	FACILITY NAME: Moe Well Pad	AME	Moe W	ell Pad			G70	G70-D216A
Emiggion Doint ID#	Formaldeh	dehyde	Benzene	ene	Toluene	ene	Ethylbenzene	nzene	Xylenes	nes	Hex	Hexane	Total	Total HAPs
Emission Four 1D#	lb/hr	tpy	lb/hr	Тру	lb/hr	tpy	lb/hr	tpy	1b/hr	tpy	lb/hr	tpy	lb/hr	tpy
CE-1	0.321	1.41	0.01	0.02	0.01	0.020	<0.01	<0.01	<0.01	0.01	0.01	90.0	0.53	2.31
HTR-1	<0.01	<0.01	'	1	1	•		•	•	ı	<0.01	0.01	<0.01	0.01
HTR-2	<0.01	<0.01	•	•	ı	•	t	•	ı	ı	<0.01	0.01	<0.01	0.01
HTR-3	<0.01	<0.01	ı	1		ı		•	•	•	<0.01	0.01	<0.01	0.01
HTR-4	<0.01	<0.01	•	•	,	•	•	4	•		<0.01	<0.01	<0.01	<0.01
TL-1	ı	1	ı	,	,	•	1				0.16	0.05	0.16	0.05
TL-2	ı	1	ı	,	ı		t	•		•	0.01	<0.01	0.01	<0.01
VRU-1	0.02	0.07	<0.01	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.02	0.10
TEG-1	<0.01	<0.01	,	•	•	•	•			•	<0.01	<0.01	<0.01	<0.01
T01-T06	I	ı	<0.01	<0.01	<0.01	0.01	<0.01	<0.01	<0.01	0.01	90.0	0.24	90.0	0.26
EC-1	<0.01	<0.01	,	ı	ı	ı	ı			•	<0.01	0.01	<0.01	0.02
EC-2	<0.01	<0.01	0.01	0.02	0.02	0.07	1		ı	1	0.01	0.05	0.03	0.14
RBV-2	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	•	•	•		<0.01	<0.01	<0.01	<0.01
Fugitive	ı		1	B	•	ı	ı	,	ı	1	•		•	<0.01
Haul Roads Fugitive	•	•	1				,		1	1	,	1	ı	,
TOTAL	0.34	1.48	0.02	0.05	0.03	0.10	<0.01	<0.01	<0.01	0.02	0.25	0.44	0.81	2.91

REGULATORY APPLICABILITY

45CSR2 (Particulate Air Pollution from Combustion of Fuel in Indirect Heat Exchangers)

The purpose of 45CSR2 (Particulate Air Pollution from Combustion of Fuel in Indirect Heat Exchangers) is to establish emission limitations for smoke and particulate matter which are discharged from fuel burning units.

45CSR2 states that any fuel burning unit that has a heat input under ten (10) MMBTU/hr is exempt from Sections 4 (weight emission standard), 5 (control of fugitive particulate matter), 6 (registration), 8 (testing, monitoring, recordkeeping, reporting) and 9 (startups, shutdowns, malfunctions). However, failure to attain acceptable air quality in parts of some urban areas may require the mandatory control of these sources at a later date. If the individual heat input of all of the proposed fuel burning units are below 10 MMBTU/hr, these units are exempt from the aforementioned sections of 45CSR2. However, the registrant would be subject to the opacity requirements in 45CSR2, which is 10% opacity based on a six minute block average. Fuel burning units greater than 10 MMBTU/hr are ineligible for registration under General Permit G70-D

Emission Unit ID#	Emission Unit Description	Maximum Design Heat Input (MDHI) (MMBTU/hr)
HTR-1	Gas Processing Unit	1.5
HTR-2	Gas Processing Unit	1.5
HTR-3	Gas Processing Unit	1.5
HTR-4	Line Heater	0.5
TEG-1	Thermal Electric Generator	0.013
RBV-1	Reboiler	0.5

45CSR6 (To Prevent and Control Air Pollution from the Combustion of Refuse)

45CSR6 prohibits open burning, establishes emission limitations for particulate matter, and establishes opacity requirements. Sources subject to 45CSR6 include completion combustion devices, enclosed combustion devices, and flares.

The facility-wide requirements of the general permit include the open burning limitations §§45-6-3.1 and 3.2.

All completion combustion devices, enclosed combustion devices, and flares are subject to the particulate matter weight emission standard set forth in §45-6-4.1; the opacity requirements in §\$45-6-4-3 and 4-4; the visible emission standard in §45-6-4.5; the odor standard in §45-6-4.6; and, the testing standard in §\$45-6-7.1 and 7.2.

Enclosed combustion control devices and flares that are used to comply with emission standards of NSPS, Subpart OOOO are subject to design, operational, performance, recordkeeping and reporting requirements of the NSPS regulation that meet or exceed the requirements of 45CSR6.

Emission Unit ID#	Maximum Design Heat Input (MDHI) (MMBTU/hr)	Subject to Weight Emission Standard?	Control Efficiency Claimed by Registrant	Provide Justification how 45CSR6 is met.
EC-1	10	✓ Yes □No	98%	The combustor has minimal particulate matter emissions. Therefore, the combustor should demonstrate compliance with this section. The facility will demonstrate compliance by maintaining records of the amount of natural gas consumed by the combustor and the hours of operation. The facility will also monitor the flame of the combustor and record any malfunctions that may cause no flame to be present during operation
EC-2	10	✓ Yes □No	98%	The combustor has minimal particulate matter emissions. Therefore, the combustor should demonstrate compliance with this section. The facility will demonstrate compliance by maintaining records of the amount of natural gas consumed by the combustor and the hours of operation. The facility will also monitor the flame of the combustor and record any malfunctions that may cause no flame to be present during operation

45CSR10 (To Prevent and Control Air Pollution from the Emission of Sulfur Oxides)

45CSR10 establishes emission limitations for SO₂ emissions which are discharged from stacks of fuel burning units. A "fuel burning unit" means and includes any furnace, boiler apparatus, device, mechanism, stack or structure used in the process of burning fuel or other combustible material for the primary purpose of producing heat or power by indirect heat transfer. Sources that meet the definition of "Fuel Burning Units" per 45CSR10-2.8 include GPUs, inline heaters, heater treaters, and glycol dehydration unit reboilers.

Fuel burning units less than 10 MMBtu/hr are exempt. The sulfur dioxide emission standard set forth in 45CSR10 is generally less stringent than the potential emissions from a fuel burning unit for natural gas. The SO₂ emissions from a fuel burning unit will be listed in the G70-D permit registration at the discretion of the permit engineer on a case-by-case basis. Issues such as non-attainment designation, fuel use, and amount of sulfur dioxide emissions will be factors used in this determination. Fuel burning units greater than 10 MMBTU/hr are ineligible for registration under General Permit G70-D

Fuel burning units burning natural gas are exempt from Section 8 (Monitoring, Recording and Reporting) as well as interpretive rule 10A. The G70-D eligibility requirements exclude from eligibility any fuel burning unit that does not use natural gas as the fuel; therefore, there are no permit conditions for 45CSR10.

Emission Unit ID#	Emission Unit Description	Maximum Design Heat Input (MDHI) (MMBTU/hr)
HTR-1	Gas Processing Unit	1.5
HTR-2	Gas Processing Unit	1.5
HTR-3	Gas Processing Unit	1.5
HTR-4	Line Heater	0.5
TEG-1	Thermal Electric Generator	0.013
RBV-1	Dehydration Unit Re-boiler Vent	0.5

45CSR13 (Permits for Construction, Modification, Relocation and Operation of Stationary Sources of Air Pollutants, Notification Requirements, Administrative Updates, Temporary Permits, General Permits, and Procedures for Evaluation)

45CSR13 applies to this source due to the fact that the applicant is defined as a "stationary source" under 45CSR13 Section 2.24.b. Stationary source means, for the purpose of this rule, any building, structure, facility, installation, or emission unit or combination thereof, excluding any emission unit which meets or falls below the criteria delineated in Table 45-13B which: (a) is subject to any substantive requirement of an emission control rule promulgated by the Secretary; (b) discharges or has the potential to discharge more than six (6) pounds per hour and ten (10) tons per year, or has the potential to discharge more than 144 pounds per calendar day, of any regulated air pollutant; (c) discharges or has the potential to discharge more than two (2) pounds per hour or five (5) tons per year of hazardous air pollutants considered on an aggregated basis; (d) discharges or has the potential to discharge any air pollutant(s) listed in Table 45-13A in the amounts shown in Table 45-13A or greater; or, (e) an owner or operator voluntarily chooses to be subject to a construction or modification permit pursuant to this rule, even though not otherwise required to do so. 45CSR13 has an original effective date of June 1, 1974.

The applicant meets the definition of a stationary source because (check all that apply):
 Subject to a substantive requirement of an emission control rule promulgated by the Secretary. Discharges or has the potential to discharge more than six (6) pounds per hour and ten (10) tons per year, or has the potential to discharge more than 144 pounds per calendar day, of any regulated air pollutant. Discharges or has the potential to discharge more than two (2) pounds per hour or five (5) tons per year of hazardous air pollutants considered on an aggregated basis. Discharges or has the potential to discharge any air pollutant(s) listed in Table 45-13A in the amounts shown in Table 45-13A or greater. Voluntarily chooses to be subject to a construction or modification permit pursuant to this rule, even though not otherwise required to do so.
General Permit G70-D Registration satisfies the construction, modification, relocation and operating permit requirements of 45CSR13. General Permit G70-D sets forth reasonable conditions that enable eligible registrants to establish enforceable permit limits.
Section 5 of 45CSR13 provides the permit application and reporting requirements for construction of and modifications to stationary sources. No person shall cause, suffer, allow or permit the construction, modification, relocation and operation of any stationary source to be commenced without notifying the Secretary of such intent and obtaining a permit to construct, modify, relocate and operate the stationary source as required in the rule or any other applicable rule promulgated by the Secretary.
If applicable, the applicant meets the following (check all that apply):
 Construction Modification Class I Administrative Update (45CSR13 Section 4.2.a) Class II Administrative Update (45CSR13 Section 4.2.b)
45CSR16 (Standards of Performance for New Stationary Sources Pursuant to 40 CFR Part 60)
45CSR16 applies to all registrants that are subject to any of the NSPS requirements described in more detail in the Federal Regulations section. Applicable requirements of NSPS, Subparts IIII, JJJJ and OOOO are included in General Permit G70-D.
The applicant is subject to: 40CFR60 Subpart IIII 40CFR60 Subpart JJJJ 40CFR60 Subpart OOOO 40CFR60 Subpart OOOOa

45CSR22 (Air Quality Management Fee Program)

45CSR22 is the program to collect fees for certificates to operate and for permits to construct or modify sources of air pollution. 45CSR22 applies to all registrants. The general permit fee of \$500 is defined in 45CSR13. In addition to the application fee, all applicants subject to NSPS requirements or NESHAP requirements shall pay additional fees of \$1,000 and \$2,500, respectively.

Registrants are also required to obtain and have in effect a valid certificate to operate in accordance with 45CSR22 §4.1. The fee group for General Permit G70-D is 9M (all other sources) with an annual operating fee of \$200.

40CFR60 Subpart IIII (Standards of Performance for Stationary Compression Ignition Internal Combustion Engines)

Subpart IIII sets forth non-methane hydrocarbon (NMHC), hydrocarbon (HC), nitrogen oxides (NOx), carbon monoxide (CO), and particulate matter (PM) emission limits, fuel requirements, installation requirements, and monitoring requirements based on the year of installation of the subject internal combustion engine. The provisions for stationary compression ignition (CI) internal combustion engines for owners or operators of this Subpart have been included in General Permit G70-D, Section 13. The following CI engines are subject to this section:

The facility does not contain an affected source (compression ignition engine) and is therefore not subject to this subpart.

40CFR60 Subpart JJJJ (Standards of Performance for Stationary Spark Ignition Internal Combustion Engines)

Subpart JJJJ sets forth nitrogen oxides (NOx), carbon monoxide (CO), and volatile organic compound (VOC) emission limits, fuel requirements, installation requirements, and monitoring requirements based on the year of installation of the subject internal combustion engine. The provisions for stationary spark ignition (SI) internal combustion engines for owners or operators of this Subpart have been included in General Permit G70-D, Section 13.

Emission Unit ID#	Engine Description (Make, Model)	Engine Size (HP)	Date of Manufacture	Provide Justification how 40CFR60 Subpart IIII is met.
VRU-1	Cummins, G5.9	84	3/19/2012	
CE-1	Caterpillar G3516 BLE	1380	3/21/2012	✓ Met Emission Standard☐ Certified Engine

40CFR60, Subpart OOOO (Standards of Performance for Crude Oil and Natural Gas Production, Transmission and Distribution for which Construction, Modification or Reconstruction Commenced after August 23, 2011, and on or before September 18, 2015)

EPA published its New Source Performance Standards (NSPS) and air toxics rules for the oil and gas sector on August 16, 2012. EPA published amendments to the Subpart on September 23, 2013 and June 3, 2016.

40CFR60 Subpart OOOO establishes emission standards and compliance schedules for the control of volatile organic compounds (VOC) and sulfur dioxide (SO₂) emissions from affected facilities that commence construction, modification or reconstruction after August 23, 2011 and on or before September 18, 2015. The affected sources which commence construction, modification or reconstruction after August 23, 2011 and on or before September 18, 2015 are subject to the applicable provisions of this Subpart as described below:

Each storage vessel affected facility, which is a single storage vessel located in the oil and natural gas production segment, natural gas processing segment or natural gas transmission and storage segment, and has the potential for VOC emissions equal to or greater than 6 tpy as determined according to this section by October 15, 2013 for Group 1 storage vessels and by April 15, 2014, or 30 days after startup (whichever is later) for Group 2 storage vessels. A storage vessel affected facility that subsequently has its potential for VOC emissions decrease to less than 6 tpy shall remain an affected facility under this subpart.

The storage tank VOC emissions will be controlled to less than 6 tpy. The vapors from the storage vessels will be

sent to a vapor recovery unit with an enclosed combustor control device as back-up.

40CFR60, Subpart OOOOa (Standards of Performance for Crude Oil and Natural Gas Production, Transmission and Distribution for which Construction, Modification or Reconstruction Commenced after September 18, 2015)

EPA published its New Source Performance Standards (NSPS) and air toxics rules for the oil and gas sector on August 16, 2012. EPA published amendments to the Subpart on September 23, 2013 and June 3, 2016.

40CFR60 Subpart OOOOa establishes emission standards and compliance schedules for the control of the pollutant greenhouse gases (GHG). The greenhouse gas standard in this subpart is in the form of a limitation on emissions of methane from affected facilities in the crude oil and natural gas source category that commence construction, modification or reconstruction after September 18, 2015. This subpart also establishes emission standards and compliance schedules for the control of volatile organic compounds (VOC) and sulfur dioxide (SO₂) emissions from affected facilities that commence construction, modification or reconstruction after September 18, 2015. The effective date of this rule is August 2, 2016.

For each well site, the registrant must reduce GHG (in the form of a limitation on emissions of methane) and VOC emissions by complying with fugitive emissions monitoring as required in §60.5397a and the alternative means of emission limitations in §60.5398a.

Gas well affected facilities are included in General Permit G70-D in Section 5.0. Are there any applicable gas well affected facilities? Yes No If Yes, list.

API Number	Date of Flowback	Date of Well Completion	Green Completion and/or Combustion Device	Subject to OOOOa?
47-095-02321	12/2016	2-1-2017	Flow to separator and into gathering line as soon as practical	0000a
47-095-02322	12/2016	2-1-2017	Flow to separator and into gathering line as soon as practical	OOOOa

Each centrifugal compressor affected facility, which is a single centrifugal compressor using wet seals. A centrifugal compressor located at a well site, or an adjacent well site and servicing more than one well site, is not an affected facility under this Subpart.

Each reciprocating compressor affected facility, which is a single reciprocating compressor. A reciprocating compressor located at a well site, or an adjacent well site and servicing more than one well site, is not an affected facility under this subpart.

Pneumatic controllers affected facilities are included in General Permit	G70-D, Sectio	
Are there any applicable pneumatic controller affected facilities?	☐ Yes	⊠ No

Each pneumatic controller affected facility not located at a natural gas processing plant, which is a single continuous bleed natural gas-driven pneumatic controller operating at a natural gas bleed rate greater than 6 scfh.

Requirements for storage vessel affected facilities are included in General Permit G70-D, Section 7.0. Are there any applicable storage vessel affected facilities? Yes No If No, list any emission reduction devices and control efficiencies used to avoid 40CFR60 Subpart OOOO.

The storage tank VOC emissions will be controlled to less than 6 tpy. The vapors from the storage vessels will be sent to a vapor recovery unit with an enclosed combustor control device as back-up.

Each storage vessel affected facility, which is a single storage vessel with the potential for VOC emissions equal to or greater than 6 tpy as determined according to this section.

Fugitive Emissions GHG and VOC Standards affected facilities are included in General Permit G70- D in Section 12.0.
Did the registrant commence construction, modification, or reconstruction of the well site after September 18, 2015 and is subject to §60.5397a? Yes No
For the purposes of §60.5397a, a "modification" to a well site occurs when a new well is drilled at an existing well site, a well at an existing well site is hydraulically fractured, or a well at an existing well site is hydraulically refractured.
A well site that only contains one or more wellheads is not an affected facility under this subpart. The affected facility status of a separate tank battery surface site has no effect on the affected facility status of a well site that only contains one or more wellheads.
Requirements for pneumatic pump affected facilities are included in General Permit G70-D, Section 16.0. Are there any applicable pneumatic pump affected facilities at the well site? Yes No Each pneumatic pump affected facility at the well site, which is a single natural gas-driven diaphragm pump. A single natural gas-driven diaphragm pump that is in operation less than 90 days per calendar year is not an affected facility under this subpart as well as the required records are kept.
40CFR63 Subpart HH (National Emission Standards for Hazardous Air Pollutants From Oil and Natural Gas Production Facilities)
This Subpart applies to owners and operators of each triethylene glycol (TEG) dehydration unit that are located at oil and natural gas production facilities. Only areas source requirements are included in General Permit G70-D, as defined in §63.761.
For area source applicability, the affected source includes each trietheylene glycol (TEG) dehydration unit located at a facility that meets the criteria specified in §63.760(a).
Glycol dehydration unit(s) are included in General Permit G70-D, Section 15.0.
Are there any TEG dehydration unit(s) at this facility? Xes No
Are the TEG dehydration unit(s) located within an Urbanized Area (UA) or Urban Cluster (UC)? Yes No
Are the glycol dehydration unit(s) exempt from 40CFR63 Section 764(d)? Xes No
If Yes, answer the following questions:
The actual annual average flowrate of natural gas to the glycol dehydration unit(s) is less than 85 thousand standard cubic meters per day, as determined by the procedures specified in §63.772(b)(1) of this Subpart. Yes No
The actual average emissions of benzene from the glycol dehydration unit process vent(s) to the atmosphere are less than 0.90 megagram per year (1 ton per year), as determined by the procedures specified in §63.772(b)(2) of this Subpart. \boxtimes Yes \square No

40CFR63 Subpart ZZZZ (National Emission Standards for Hazardous Air Pollutants for Stationary Reciprocating Internal Combustion Engines)

Subpart ZZZZ establishes national emission limitations and operating limitations for hazardous air pollutants (HAP) emitted from stationary reciprocating internal combustion engines (RICE) located at major and area sources of HAP emissions. This Subpart also establishes requirements to demonstrate initial and continuous compliance with the emission limitations and operating limitations. This section reflects EPA's final amendments to 40 CFR part 63, Subpart ZZZZ that were issued on January 15, 2013 and published in the Federal Register on January 30, 2013.

WVDEP DAQ has delegation of the area source air toxics provisions of this Subpart requiring Generally Achievable Control Technology (GACT). The provisions of this Subpart have been included in this general permit under Section 13.0.

Emission Unit ID#	Engine Description (Make, Model)	Engine Size (HP)	Date of Manufacture	New or Existing under 40CFR63 Subpart ZZZZ?	Provide Justification how 40CFR63 Subpart ZZZZ is met.
VRU-1	Cummins, G5.9	84	3/19/2012	New	Commenced construction after June 12, 2006. Shall comply with 40 CFR 60 Subpart JJJJ.
CE-1	Caterpillar G3516 BLE	1380	3/21/2012	New	Commenced construction after June 12, 2006. Shall comply with 40 CFR 60 Subpart JJJJ.

Are there any engines that fall in the window of be			Subpart ZZZZ but manufactured before
the applicability date in 40CFR60 Subpart JJJJ?	Yes	⊠ No	

SOURCE AGGREGATION DETERMINATION
"Building, structure, facility, or installation" is defined as all the pollutant emitting activities which belong to the same industrial grouping, are located on one or more contiguous and adjacent properties, and are under the control of the same person.
Is there equipment and/or activities used for onshore oil and natural gas production that are located on the same site, or on sites that share equipment and are within ¼ mile of each other? Yes No Is this equipment and/or activities under "common control"? Yes No Do these facilities share the same two (2) digit SIC code? Yes No
Final Source Aggregation Decision. Source not aggregated with any other source. Source aggregated with another source. List Company/Facility Name:
RECOMMENDATION TO DIRECTOR
The information provided in the permit application, including all supplemental information received, indicates the applicant meets all the requirements of applicable regulations and the applicant has shown they meet the eligibility requirements of General Permit G70-D. Therefore, impact on the surrounding area should be minimized and it is recommended that the facility should be granted registration under General Permit G70-D.
Permit Engineer Signature: Orath Army Name and Title: Jonathan Carney Date: January 24, 2017